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ABSTRACT

A study of methods for sulfate air quality control strategy
design has been conducted. Analytical tools developed were tested
within a case study of the nature and causes of the high sulfate
concentrations observed in the Los Angeles area. A principal
objective was to investigate the least costly means for sulfate air

quality improvement in that locale.

A long-run average emissions to air quality model was
derived which computes pollutant concentrations from Lagrangian
marked particle statistics based on the timé sequence of measured
wind speed, wind direction, and inversion base motion. Physical
assumptions drawn from analysis of existing air quality and meteoro-
logical data were used to adapt this model to a specific application
—— sulfate air quality prediction in Los Angeles. An energy and sul-
fur balance on the fate of energy resources containing sulfur was
developed to test the consistency of a sulfur oxides emissions
inventory for that air basin. Then material balance arguments were
used to trace sulfur flows within that regional energy economy through
the air quality model which also conserves sulfur mass. Sulfate air

quality model predictions were compared to historical observations
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over the years 1972 through 1974. The sulfate air quality impact of
individual emission source classes was estimated at a large number of

air monitoring sites.

A hybrid theoretical-empirical model was constructed which
explains the relationship between sulfate air quality and prevailing
visibility at Los Angeles. An estimate was made of the visibility
improvement which would have accured if Los Angeles sulfate concen-
trations were reduced by 50 percent on each past day of record. Then
two emissions control strategy example calculations were performed
to illustrate the means by which the air quality model results could
be used to evaluate the cost of attaining such an air quality improve-

ment.
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1.0 Introduction

A study of particulate sulfate air quality control opportunities
in the South Coast Air Basin has been conducted. The principal
objectives of that study were to obtain a physical description of
the nature and causes of the high sulfate concentrations observed
in the Los Angeles area, and to investigate the least costly means

for sulfate air quality improvement in that locale.

Particulate sulfates accounting for a few percent of the sulfur
content of fuel are emitted directly from most combustion processes.
Additional sulfates form from atmospheric oxidation of SO2 downwind
from a sulfur oxides source. These water-soluble sulfur oxides
particles accumulate in a size range around 0.5 microns in diameter
in the Los Angeles atmosphere (Hidy et al., 1975). Particles of this
size are extremely effective scatterers of light (Middleton, 1952),
and also are capable of deep penetration into the lung (Task Group,
1966) . Recent studies indicate that sulfates contribute to
visibility deterioration (Eggleton, 1969; Charlson et al., 1974;
Waggoner et al., 1976; Weiss et al., 1977; White and Roberts, 1977)
and to the acidification of rain water (Cogbill and Likens, 1974;

Likens, 1976) throughout the United States and in Europe.

In Figure 1, it is seen that two areas of the United States
are affected by high sulfate concentrations: the entire Eastern

United States and portions of southern California. The Los Angeles
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sulfate problem presents an excellent choice for a case study of
sulfate air quality control opportunities because it is self-
contained: it spans a small enough geographic area that one can
draw a box around it and analyze it in great detail. 1In the process,
insights will be acquired that should help those charged with control
of sulfate air quality problems of great geographic extent in the

Eastern United States and in Europe.

The research plan for this study is shown in the upper portion
of Figure 2. Mathematical models relating sulfur oxides emissions
to sulfate air quality and to effects on visibility are verified
against historical monitoring data. Examples are then given to show
how those models can be used to define the least costly path toward
sulfate air quality improvement. Findings established in pursuit
of that research plan are described in this Executive Summary.

2.0 Characteristics of Sulfate Air Quality in the South Coast
Air Basin

The geographic region of interest is the South Coast Air Basin
which surrounds Los Angeles. Air quality data from twenty-seven
sampling sites at locations shown in Figure 3 have been analyzed
as part of this study. Particular attention was paid to the years
1972 through 1974. During those years, the Los Angeles Air Pollution
Control District (LAAPCD), EPA's CHESS program and the National Air
Surveillance Network monitoring programs operated concurrently
yielding the widest geographic coverage of sulfate air quality data

available at the start of this investigation.
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Spatial gradients in sulfate air quality indicate that the atmo-
sphere over metropolitan Los Angeles is enriched in sulfates due to local
emissions sources. Annual mean sulfate concentrations above 14 ugm/m3
were measured over central Los Angeles at a time when background
concentrations in incoming marine or desert air averaged 3 to 5 ugm/m3.
This localized sulfate enrichment is illustrated in Figure 4. In
contrast to the problems arising from long distance transport of
sulfates in the Eastern United States, a sulfate air quality model
can be validated in the South Coast Air Basin while employing only

local emissions data plus a small increment from background sulfates.

Sulfate concentrations observed at the downtown Los Angeles
station of the Los Angeles Air Pollution Control District during
the decade 1965 through 1974 are shown in time series in Figure 5a.
Concentration fluctuations from day to day are quite large, with
high values occﬁrring at least occasionally in all seasons of the
year. However, the data can be filtered statistically to reveal
seasonal trends, as shown in Figure 5b. It is seen that a broad
summer seasonal peak in sulfate concentrations occurs in all years
of record, with clusters of very high sulfate concentrations also
observed in two of nine winters examined (winter 1970-71 and winter
1971-72). A successful air quality control strategy study must
consider both high summer and high winter sulfate conditions in the

Los Angeles area.
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In Figure 6, the same filtering process has been applied to the
LAAPCD and CHESS data at all monitoring stations active during the
period 1972 through 1974. The similarity of seasonal pollutant
patterns is quite striking. Simultaneous 24-hour average sulfate
concentrations at widely separated monitoring stations are of nearly
equal magnitude and are highly correlated, as shown by the graphs in
Figure 7. Temporal trends in the available sulfate air quality data
base are more pronounced than average spatial gradients. When con-
structing a model which must explain the dynamic nature of Los Angeles
sulfate air quality, concentration predictions made in time series

should be emphasized.

The ability of available field data to verify time series air
quality predictions was investigated statistically. From analysis
of measurement errors and sampling frequency it was found that
sulfate air quality predictions made over monthly and longer averaging
times could be verified closely. Therefore, an air quality model

for monthly average sulfate concentrations will be sought.

A mass balance on the fate of sulfur oxides emissions in
Los Angeles constructed by Roberts (1975) and summarized in Table 1
shows that emissions of both primary sulfates and 802 must be con-
sidered. Ground level deposition of sulfur oxides is a significant
removal mechanism. The atmospheric oxidation of SO2 to form addi-
tional sulfates must be included within our air quality model in order

to account for total observed sulfate concentrations.
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TABLE 1

Material Balance(l) on the Fate of

Sulfur Oxides in Los Angeles on July 25, 1973
(from Roberts, 1975)

Sulfur Oxides
(in metric tons per day
stated as SOy equivalents)

Sources
802 Emissions 419
Primary Sulfate Emissions less than 22
Background Sulfates 7
less than 448
Fate
Ground Level Dry Deposition of 802 248
Ground Level Dry Deposition of 504= 5
50, Remaining Airborne 115
504= Airborne 57

425

(1)

Source and fate estimates obtained independently, hence perfect
agreement not expected
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In order to select a chemical modeling approach, atmospheric

sulfur oxides air chemistry first was reviewed. Then sulfate concen-

tration changes from day-to-day were compared to fluctuations in

the other observable components of the likely chemical oxidation
processes. Sulfate concentration changes were shown to closely
track changes in relative humidity and total suspended particulate
levels, with intrusion of fog on days of very high sulfate concen-
tration. This suggests that heterogeneous oxidation of SO2 on or
within wetted particles is important to days of high sulfate concen-
tration in Los Angeles. Sulfate concentrations also were found to

be significantly higher on days of elevated oxidant concentrations.

Thus gas phase oxidation of SO2 by free radicals present in Los Angeles

photochemical smog probably also is important.

While procedures exist which would permit computation of gas

phase SO, oxidation rates from first principles, data on catalyst

2
concentration and ammonia levels needed to calculate heterogeneous

phase S0, oxidation rates on or within wetted particles are lacking.

2
Fortunately, the pseudo~first order rate of SO2 oxidation in the
Los Angeles atmosphere due to all chemical processes combined was
measured during field experiments conducted in 1973. Thus it was
decided that chemical conversion of 502 to form sulfates should be
modeled as a slow pseudo~first order reaction within the range of

existing experimental data on the rate of sulfate formation in the

Los Angeles atmosphere,
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Ambient monitoring data also were studied to identify the
meteorological processes which most directly affect sulfate transport
and dispersion. The Los Angeles Basin is influenced by coastal
meteorology characterized by a daily sea breeze/land breeze wind
reversal. Differential heating of land and sea surfaces leads to a
daytime wind pattern with transport inland across the coastline as
shown in Figure 8a. At night the characteristic transport pattern
reverses as seen in Figure 8b. Slow drainage winds and land breeze
conditions cause flow out to sea. As a result, vector average wind
speed (which determines air parcel retention time in the basin) is
typically less than half of the apparent scalar wind speed observed,
as shown in Table 2. From analysis of air parcel trajectories, it
was found that a trajectory integration time of two days would be
needed to insure that 95 percent of the air parcels of that age are
advected to beyond the boundaries of the 50 by 50 mile square area
pictured in Figure 8. Even slow atmospheric chemical reactions would
proceed toward completion over such long retention times in the air

basin.

Afternoon inversion base height was shown to govern the extent of
vertical dilution for sulfates within this airshed. In the mornings,
inversion base height is often low enough that emissions from
elevated sources are injected above the mixed layer of the air basin
for many hours. Thus it was found that the key meterological factors

which must be incorporated into the transport portion of our air
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Month

January
February
March
April
May
June
July
August
September
October
November

December

16

Table 2

Monthly Resultant Wind Data

For Long Beach During the
Years 1972 through 1974

Resultant Wind Speed
Computed after Progressive

Vector Addition of

Successive Wind Observations

for Each Month
(miles per hour)

Scalar Average
of Wind Velocity

1972

0.4

0.9

2.5

2.7

3.4

3.8

3.0

2.8

3.2

2.0

1.3

2.1

1973

1.0
1.4
4.3
2.8
3.2
3.1
2.9
2.8
2.6
2.1
1.5

0.6

1974

1.0

1.2

2.5

3.5

3.1

2.7

2.7

2.6

1.6

2.6

1.9

0.6

Observations
(miles per hour)
1972 1973 1974
5.6 6.4 4.8
5.2 6.5 5.4
6.0 8.2 5.2
6.2 8.1 5.7
6.9 6.4 5.7
7.3 6.4 5.3
7.1 5.8 5.4
6.7 6.1 5.4
6.8 6.2 3.3
5.7 5.6 5.4
5.5 5.1 4.9
6.2 3.0 5.3

Source: U.S. Department of Commerce (1972 through 1974 )

To convert miles per hour to meters per second, multiply by 0.45.
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quality model include inversion base motion as well as vector valued

wind.

3.0 Air Quality Model Development

Most existing long-term average air quality models lack the
ability to reproduce those conditions most important to sulfate air
quality in a coastal region like Los Angeles. Pseudo-steady state
models which employ a joint frequency distribution of wind speed, wind
direction and atmospheric stability have no hope of correctly computing
air parcel retention time in an air basin characterized by a daily
sea breeze/land breeze reversal in wind direction. That is because
those models contain no information about the serial correlation of

the wind vectors.

Therefore a new type of simulation model was derived for
directly calculating long-run average sulfate air quality under un-
steady meteorological conditions. The model computes pollutant
concentrations from long-run average source to receptor transport and
reaction probabilities. These transport and reaction probabilities
in turn were estimated from Lagrangian marked particle statistics

based on the time sequence of historical measured wind speed, wind

direction, and inversion base height motion within the airshed of
interest. First order chemical reactions and pollutant dry deposition

were incorporated. The model was adapted to a multiple source urban

setting in a way which permits retention of the air quality impact
of each source class contributing to air quality predictions at each

receptor site.
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The calculation procedure used in that air quality model can
be summarized briefly. Single particles marked with the magnitude and
initial chemical composition of sulfur oxides emissions from each
source are inserted at measured time intervals into the atmosphere
above the location of their points of origin. Depending on the plume
rise characteristics of each source and meteorological conditions at
the time of release, a pollutant parcel may be inserted either above
or below the base of the temperature inversion which separates a well

mixed layer next to the ground from a stable air mass aloft.

As these sulfur oxides laden air parcels are transported down-
wind, chemical reactions and surface removal processes act to alter
the mass of 509 and sulfates represented by each particle. Sulfur
oxides residing within the mixed layer next to the ground are affected
both by ground level dry deposition and by atmospheric oxidation of
502 to form additional sulfates. Pollutant parcels stored within
the stable layer aloft are isolated from surface removal processes
but still are available for chemical reaction. Exchange of air
parcels between the mixed layer next to the ground and the stable
layer aloft occurs as inversion basing height changes over time, as

pictured in Figure 9.

Transport calculations in the horizontal plane are described
schematically in Figure 10. The trajectories of successive particles
released from a source form streaklines downwind from that source.
Streaklines present at each hour of the month are computed and

superimposed. The horizontal displacement of each particle located
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Figure 10

OBJECTIVE: To compute the average pollutant concentration observed

resulting from a unit source located at zo.

STEP | %
SUPERIMPOSE STREAKLINES CONTAINING

ALL FLUID PARTICLES OBSERVED: ONE
STREAKLINE FOR EACH HOUR OF THE MONTH

STEP 2

LOCATE PARTICLES WITHIN
THE CELLS OF A RECEPTOR
GRID

STEP 3

ACCUMULATE THE MAGNITUDES
ASSCCIATED WITH THE PARTICLES
FALLING WITHIN EACH GRID CELL

STEP 4

DIVIDE THE ACCUMULATED
POLLUTANT MASS LOADING BY THE
SIZE OF THE RECEPTOR CELL AND THE
NUMBER OF "HOURS'" BEING SUPERIMPOSED

RESULT

THE SOURCE TO RECEPTOR
RELATIONSHIP HAS BEEN CALCULATED WHIC
MAPS EMISSIONS FROM A UNIT SOURCE

AT LOCATION X INTO AVERAGE POLLUTANT
CONCENTRATION OBSERVED
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below the inversion base is paired with the particle's probable
chemical status and divided by the depth of the mixed layer at the
time that the streakline of interest was computed. The resulting mag-
nitudes are assigned to a matrix of receptor cells by summing the
contribution for all particles falling within the same receptor cell.
Totals are accumulated separately for SO2 and for sulfates. The
accumulated totals are divided by the dimensions of a receptor cell
and the number of time steps being superimposed in order to directly
obtain the spatial distribution of long-term average S0, and sulfate

concentrations appearing throughout the airshed,

By repeating that process for each source in the airshed and
superimposing the results onto an estimate of sulfate background air
quality, a multiple source urban air quality model for sulfates is
obtained. Superposition is permitted because all chemical processes

are modeled in a form that is linear in emissions.

Potential sources of error in this model as well as the most
advanced trajectory models in use today include neglect of wind
shear and neglect of the vertical component of thée wind. These
problems can be overcome mathematically in our model at an increase
in computing cost. However, lack of appropriate measurements on

winds aloft prevents incorporation of these improvements at present.

The long-run average Lagrangian marked particle air quality
model has several particular merits. The model need not compute con-
centration averages from a real time sequence of events. The order

of integration over air parcel release and transport may be arranged
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to minimize computing time and intermediate data storage requirements.
The calculations are very simple and completely stable over time.
There are no artificial diffusion problems associated with the trans-
port scheme employed. Pollutant mass is completely conserved. The
model builds its own initial conditions by integrating backward to
connect all locally-emitted air parcels in the airshed at a given time
to their source. Air parcels advected beyond the edges of the
receptor grid are not lost to the system. Their position is remembered
but their magnitude is not accumulated to a receptor cell unless the
air parcel is advected back into the region of interest. Receptor
cells may be specified only over those areas where concentration

estimates are desired.

When adapting the air quality model for use in Los Angeles, three
approximations were made as a practical consideration aimed at conserv-—
ing available computing resources. First, inversion base height above
ground level over the central Los Angeles Basin was treated as being
spatially homogeneous at any given time. Secondly, it was assumed
that inversion base motion could be represented by a stylized diurmal
cycle which passes through the known daily maximum and minimum inver-—
sion base height. Finally, at any single time, the wind field over
the Los Angeles coastal plain (see the area shown in Figure 8) was
approximated as a uniform parallel flow. The first and third
approximations above result in a huge savings in computing time by

permitting the separation of trajectory and chemical calculations



from detailed dependence on a given starting location in the airshed.
Model validation results presented shortly indicate that these approxi-
mations typically do not lead to errors in sulfate concentration
predictions which would exceed the error bounds on the field air

quality observations against which the model was tested.

4.0 An Energy and Sulfur Balance on the South Coast Air Basin

Techniques were developed and tested for performing both energy
and sulfur balance calculations on flows of energy resources containing
sulfur throughout the economy of the South Coast Air Basin. This
approach serves several valuable functions. First, it provides a
nearly independent check on the spatially resolved emissions inventory
required for air quality model validation. Next it establishes the true
current emissions control strategy in the airshed by showing those
points in the system where sulfur is captured or segregated into
products which will not lead to pollutant emissions., That is important
because emissions control may be occurring in ways not obvious from
reading local emissions control regulations. Pollutant emissions are
connected to energy flows in a way that control strategy questions
involving fuel or process substitution can be addressed. By forcing
the emissions inventory to be energy consistent, prospects for making

plausible emissions forecasts are improved,

Energy and sulfur balance calculations for the South Coast Air
Basin in 1973 are summarized in Tables 3 and 4. The energy balance
closes almost exactly, indicating that the sources and sinks for energy

resources consumed in the air basin in that year are well understood.
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A material balance on the sulfur supplied within those energy resources

shows that:

Virtually all of the sulfur entering the air basin in that year
arrived in a barrel of crude oil.

Nearly 50 percent of the sulfur arriving was recovered at the
refinery level as elemental sulfur or sulfuric acid.

Approximately 25 percent of the sulfur was segregated into products
like petroleum coke, asphalt and exported high sulfur fuel oil
which would not be burned locally.

4.4 percent of the sulfur supply found its way into solid or liquid
wastes.

At least 14 percent of the sulfur was emitted to the atmosphere.
The fate of 9.4 percent of the sulfur supply was undetermined. Over
70 percent of that sulfur imbalance was due to small percentage
differences between two independent estimates of total sulfur
supplied in crude oil versus total sulfur reported processed by
refiners. This discrepancy would not lead to a significant change

in atmospheric SOX emissions estimates.

It was demonstrated that the Los Angeles Basin in 1973 was already

achieving greater than 80 percent overall control of its potential

SOX emissions. Any future emission control measures adopted must be

consistent with maintaining control over all of the sulfur which could

get into the air rather than just that portion which currently does

become airborne.
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The spatially resolved inventory of sulfur oxides emissions
required for air quality model application next was compiled from a
source by source accounting of pollutant emissions. A grid system
was laid down over the central portion of the South Coast Air Basin
as shown in Figure 11. Emissions estimates for both sulfur dioxide and
primary sulfates resolved over that grid system were obtained for
the twenty-six classes of mobile and stationary sources listed in
Table 5 for each month of the years 1972 through 1974. Major off-grid
sources at locations shown in Figure 11 also were surveyed for
inclusion in the air quality model calculations. The spatial distri-
bution of average daily total sulfur oxides emissions during 1973
illustrated in Figure 12 was obtained by overlaying similar maps

developed for each source class of interest.

Figure 13 shows the time history of sulfur oxides emissions from
sources located within the 50 by 50 mile square grid. An underlying
increment to sulfur oxides emissions from mobile sources is observed
which shows little seasonal variation. Added to that is a nearly
constant contribution from miscellaneous stationary sources (principally
from petroleum coke calcining kilns). Petroleum refinery process
emissions are shown, mostly from refinery fluid catalytic cracking
units. Emissions from chemical plants (which constituted the largest
single emissions source class during 1972) decline sharply during
our three year period of interest as local sulfur recovery and sulfuric

acid plants added new emissions control equipment.
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A strong seasonal variation in emissions from fuel burning
sources is observed. Peak sulfur oxides emissions from electric
utilities occur in the winter months as high priority home heating
customers increase their consumption of natural gas forcing low priority
gas customers, including electric utilities and some industries, to
shift to combustion of sulfur-bearing fuel oil. An unusually
severe test for our air quality model has been identified. A success-
ful air quality model applied during these three years will have to
be able to track strong seasonal changes in emissions source strength
which are usually six months out of phase with the summer peak

sulfate concentrations observed.

5.0 Results of the Air Quality Model Validation

The air quality dispersion model was applied to.simulation of
Los Angeles sulfate air quality over each month of the years 1972
through 1974. Model results closely reproduced observed sulfate
concentration patterns within the central portion of the Los Angeles
Basin, particularly during the years 1972 and 1973. Figures 14 through
18 outline air quality model results in time series at several
widely separated air monitoring sites. In the upper graph of each
pair, the sulfate air quality model results are represented by
a continuous horizontal line which rises and falls over time. The
small circles indicate the monthly means of sulfate observations
at each monitoring site. The error bars represent a 95 percent

confidence interval on the ambient air quality observations.
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Approximately 80 percent of the sulfate concentration predictions
at LAAPCD air monitoring stations are within the error bounds on
the ambient monitoring results. Model predictions track observed
sulfate levels closely at the critical CHESS stations in the eastern
San Gabriel Valley at Glendora and West Covina. A tendency to under-
predict the summer peaks observed near the up-coast and down-coast
edges of our study area at Santa Monica and at Garden Grove and
Anaheim during 1973 and 1974 was noted. An illustration of the correla-
tion between observed and predicted sulfate concentrations over all

monitoring sites combined is given in Figure 19.

Source class increments to predicted sulfate air quality were
examined in time series at each air monitoring station, as shown
in the lower graphs of Figures 14 through 18. It was found that
three to five source.classes of roughly equal impact, plus back-
ground sulfates, must be considered simultaneously in order to come
close to explaining sulfate levels observed at most locations. For
example, during the year 1973 at downtown Los Angeles, contributors to
the annual mean sulfate concentrations observed were estimated to be:

@ Background sulfates - 28%

@ Electric utility generating stations - 23%

@ Heavy duty mobile sources - 15%

@ Sulfur recovery ‘and sulfuric acid plants - 12%

@ Petroleum refining and production - 11%
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@® Autos and light trucks - 4%
@® Petroleum coke calcining kilns - 3%

@® All remaining sources - 4%

The relative importance of particular source classes varies from one
monitoring site to another, but no single source class clearly
dominates the observed sulfate concentrations. The implication is that
a mixed strategy targeted at a combination of source types will be
needed if significant sulfate air quality improvements are to be

achieved in this airshed through precursor SOX control.

A seasonal variation in the overall rate of SO2 oxidation in the
Los Angeles atmosphere was inferred from simultaneous comparison of
observations and model predictions at a large number of monitoring
sites. As shown in Table 6, monthly mean 802 oxidation rates of
between 0.5 percent per hour and 3 percent per hour prevail from
October through February of our test years. During late spring,
summer, and early fall, 302 oxidation rates were estimated to jump to
an average of about 6 percent per hour, with individual months
ranging * 2 percent per hour about that mean value. Those numerical
results must be qualified since a better understanding of seasonal

trends in background sulfate concentrations or 802 deposition velocity

could alter the outcome somewhat.

One striking feature of Los Angeles sulfate air quality is that

average upwind/downwind concentration gradients observed between




Month

January
February
March
April
May
June
July
August
September
October
November

December

1972

3%

4%

5%

47

27

17

Notes: (a) Average value from

(Roberts, 1975)

42

TABLE 6

Calculated Rate of SO, Oxidation to Form Sulfates

2

in the Los Angeles Atmosphere, in Percent per Hour

(Overall Average Values of k for the Month Shown)

1973 1974
1% 0.5%
1.5% 1%
17 1%
5% 17
8% 5%
7% 6%
8z () 5%
5% 8%
5% 8%
1% 37
0.75% 1%
1% 0.5%

field measurement program in

Three year

mean

that month.
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monitoring sites are rather small in spite of the highly localized
nature of major SOx emission sources. Annual average sulfate air
quality model predictions shown in Figures 20 through 22 confirm that
observation: most monitoring sites lie within the 10 and 15 ugm/m3
isopleths in all years of interest. The air quality model results

of Figures 23 and 24 showing individual source class contributions

to observed sulfate air quality help to explain this phenomenon. In
winter months with a pronounced daily sea breeze/land breeze wind
reversal, air parcel trajectories wander widely over the basin. Sulfur
oxides emitted from all source classes are dispersed widely within the
airshed by the rotation of the wind vectors. In contrast, during
mid-summer, onshore flow persists for most of the day. However, the
sequential siting of major S04 sources along the coast means that the
central portion of the air basin is downwind of one major source

group or another at most times. Lateral dispersion of emissions

is just about sufficient to balance sulfate formation, with the result
that upwind/downwind pollutant gradients are rather small in spite

of the direct inland transport from séurtes to receptors. Annual

mean sulfate concentrations are further smoothed by seasonal transport
cycles in which peak sulfate concentrations appeared far inland during

the summer and near the coast during the winter.

In January 1972, extreme resultant wind stagnation occurred
during a period of high SOX emissions. The highest localized sulfate
concentration predictions for any month of our three year period

occurred at that time. While such extended stagnation is unusual, the
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fact that it can occur means that sulfate air quality control strategy
design must consider avoidance of wintertime as well as summertime

pollution episodes in Los Angeles.

6.0 The Relationship Between Sulfate Alr Quality and Visibility

Techniques were developed for analysis of the long-run impact of
pollutant concentrations on visibility at downtown Los Angeles. Exist-
ing statistical models which use particle chemical composition as a
key to particle size and solubility were reviewed. An analysis of
vapor pressure lowering over solutions of electrolytes was used to add
Structure to these models so that the relative humidity dependence of
light scattering by hygroscopic aerosols could be represented in a
more physically realistic manner. Light absorption by NO2 was added to

the analysis.

Coefficients were fit to the model based on air pollution control
agency routine air monitoring data taken at downtown Los Angeles over
the decade 1965 through 1974. Tt was found that principal contributors
to visibility reduction at downtown Los Angeles include sulfates and
oxides of nitrogen (N02 and nitrates)., There is a pronounced increase
in light scattering per unit sulfate solute mass on days of high
relative humidity, as would be expected for a hydroscopic or deli-
quescent substance. Light extinction by SULFATES was quantified as
0.107 (l—RH)—O'53 (lOZ*m)—1 per ugm/m3, where RH stands for relative
humidity in (%/100) and SULFATES is taken as 1.3 times the measured

SO4— concentration in order to account for the mass of associated cations,
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That functional relationship between light extinction by sulfates

and relative humidity was compared to theoretical calculations for
light scattering by ammonium sulfate aerosols. Our results were

found to be similar in shape but slightly higher than the theoretical
calculation would indicate. These small differences between theory

and analysis of Los Angeles observations may be due to the deviation of
an actual human observer's visual acuteness from that assumed by

Koschmieder.

Having developed and fitted a model representing a decade of
atmospheric events, it becomes possible to examine the likely long-
run response of visibility in the Los Angeles basin to altered levels
of particulate sulfates. I+ was estimated that the visibility impact
of reducing sulfates to a half or to a quarter of their measured
historic values on each past day of record would be manifested most
clearly in a reduction of the number of days per year with average
visibility less than three miles. For example, as shown in Figure 25,
a 50 percent reduction in sulfates levels on a daily basis would have
reduced the number of days with worse than three—mile visibility by
about one half, while improvement in the number of days of average
visibility greater than ten miles would be much smaller, about 10

percent.



53
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7.0 Toward Emission Control Strategy Analysis

The results of the air quality and visibility models can be used
to evaluate sulfate air quality control strategy options. Example
calculations worked for the year 1973 in Figure 26 show that a 43
percent reduction in annual mean sulfate concentrations at downtown
Los Angeles could have been achieved in that year through application
of the SO, emission control technologies suggested by Hunter and
Helgeson (1976). A second strategy predicted in part on deregulation
of the price and availability of new natural gas supplies to industry
could have achieved about a 49 percent decrease in sulfate concentra-
tions in 1973 at lower cost than a purely technological solution to

the Los Angeles sulfate problem.
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STATIONARY SOURCE EMISSION CONTROLS
IDENTIFIED BY HUNTER AND HELGESON (1976)
APPLIED TO SOx EMISSIONS SOURCES LOCATED
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AS THEY EXISTEDIN 1973
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Figure 26

NOTE: This figure accompanies a sulfate air quality control strategy
example calculation. It applies to conditions in that airshed as they
existed in 1973. Further reductions in natural gas supply beyond the
levels of service observed in 1973 will greatly increase the annual
cost of the emissions control strategy pictured in the upper curve of
this graph. Changes in assumptions about emissions control technology
or clean fuel availability and price could significantly alter the cost
effectiveness shown. This figure was constructed to illustrate the
means by which the description of airshed physical processes developed
in this study can be used almost immediately to formulate emission
control strategies for sulfates in the South Coast Air Basin. It should
not be interpreted as containing a control strategy recommendation.

(Reproduction of this figure without this caption will not be authorized.)
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